
Vehicle RoadSense – Vehicle, Lane and Pedestrian
Detection

Dinesh Channabasappa Dhotrad
dept. Computer Science

Case Western Reserve University
dxd539@case.edu

Praneeth Kollati
dept. Computer Science

Case Western Reserve University
pxk505@case.edu

Abstract—“Vehicle RoadSense – Vehicle, Lane, and Pedestrian
Detection” is an innovative project that integrates advanced
digital image processing and deep learning techniques to create
a robust system for road safety and intelligent transportation.
The project emphasizes the application of sophisticated image
processing algorithms for accurate lane detection, which is pivotal
for autonomous driving systems. Through meticulous camera
calibration, pixel extraction, and lane boundary detection, the
system provides reliable lane departure warnings and precise
vehicle positioning, thereby enhancing road safety measures.

The project also incorporates the cutting-edge YOLOv8 pre-
trained model to achieve real-time detection of vehicles and
pedestrians. This deep learning component is crucial for the
system’s ability to detect and track dynamic objects within the
vehicle’s vicinity, significantly improving situational awareness
and response capabilities. While the core of lane detection relies
on time-tested image processing techniques, the inclusion of
YOLOv8 extends the system’s detection capabilities, offering a
comprehensive solution for vehicle and pedestrian recognition.

This technical report delves into the methodologies imple-
mented, with a particular emphasis on the digital image process-
ing techniques that underpin lane detection. It further explores
the integration of the YOLOv8 model for detecting vehicles and
pedestrians, highlighting its vital role in augmenting the system’s
overall performance. The results and discussions presented herein
demonstrate the efficacy of this hybrid approach in facilitating
accurate vehicle positioning, enhancing lane-keeping functions,
and providing dependable vehicle and pedestrian detection in
various driving conditions.

I. INTRODUCTION

As the world moves towards more intelligent and automated
transportation systems, the need for advanced safety mech-
anisms becomes paramount. “Vehicle RoadSense – Vehicle,
Lane, and Pedestrian Detection” stands at the forefront of
this evolution, aiming to significantly enhance road safety and
traffic efficiency. This project is a testament to the synergy
between traditional digital image processing techniques and
the power of deep learning, tailored to address the critical
aspects of modern traffic management.

At the heart of the project lies the lane detection system,
a cornerstone of vehicular safety. Employing classical image
processing methods such as perspective transformation and
polynomial fitting, the system meticulously analyzes camera
feeds to delineate lane boundaries with remarkable accuracy.
By scrutinizing pixel intensities and exploiting the geometry
of road markings, it can discern lane curvatures and assess

vehicle positioning, ensuring that drivers receive timely lane
departure warnings.

In parallel, the project harnesses the prowess of the
YOLOv8 pretrained model for the detection of vehicles and
pedestrians in real-time. This deep learning model excels in
identifying and tracking various entities within the vehicle’s
environment, thereby bolstering the system’s capability to
preemptively react to potential hazards. Despite its minimal
reliance on deep learning, YOLOv8’s contribution is instru-
mental in enriching the system’s perception of its surround-
ings.

This report unfolds the methodologies underpinning the
Vehicle RoadSense project, with a special focus on the digital
image processing techniques that form the backbone of lane
detection. It also touches upon the integration of YOLOv8
for vehicle and pedestrian detection, underscoring its pivotal
role in reinforcing the system’s detection suite. The ensuing
sections will delve into the methods deployed, the results ob-
tained, and the discussions therein, culminating in a conclusion
that reflects on the project’s impact on advancing road safety
and traffic management.

II. METHODS

Our methodology comprises several key steps to achieve
accurate and robust vehicle road sensing, with a primary focus
on traditional digital image processing techniques comple-
mented by YOLOv8 object detection for vehicle and pedes-
trian recognition. The methods section is structured to provide
a comprehensive understanding of each step in the pipeline,
ensuring replicability and transparency.

Figure 1 below illustrates the architecture of our pipeline,
providing a visual representation of the entire process. It
details how each component of the system interacts and
contributes to the overall functionality, from the input data to
the detected and segmented lane and pedestrian. This figure
serves as a guide to understanding the flow of data and
the sequence of operations that lead to the detection and
recognition of lanes, vehicles, and pedestrians.

A. Camera Calibration

Camera calibration is a pivotal procedure in the “Vehicle
RoadSense” project, serving as the foundational step that
precedes all subsequent image processing tasks. This process

Fig. 1: Pipeline Architecture

is critical for rectifying any optical distortions introduced by
the camera’s lens, which, if left uncorrected, could lead to
significant errors in spatial measurements and object detection.

1) Image Collection: A set of high-resolution images of
a standard checkerboard pattern is captured from various
angles and distances. This pattern provides a known geometric
reference that is essential for calibration.

2) Corner Detection: Utilizing the OpenCV function
‘cv2.findChessboardCorners‘, the precise corners of the
checkerboard squares are detected in each image. These cor-
ners serve as key points for mapping the 2D image points to
3D real-world space.

3) Point Mapping: The detected 2D points are mapped to
a predefined 3D model of the checkerboard pattern. This step
establishes the correspondence between the 2D image plane
and the 3D world coordinates.

4) Calibration Computation: With the mappings estab-
lished, the ‘cv2.calibrateCamera‘ function computes the cam-
era matrix, which includes intrinsic parameters like focal
length and optical center, and distortion coefficients that ac-
count for lens imperfections.

Fig. 2: Corner Detected in Checkerboard

The rationale behind camera calibration is rooted in the
principles of photogrammetry and computer vision. Lens dis-
tortion, particularly radial distortion, can warp images, causing
straight lines to appear curved. This warping effect is detri-
mental to applications like lane detection, where the accuracy

of line curvature and vehicle positioning is paramount. By
calibrating the camera, we ensure that the images used for lane
detection are as close to the real-world scenario as possible,
thereby enhancing the reliability of the entire system.

B. Image Preprocessing

Image preprocessing is a multi-faceted process that prepares
the captured images for the lane detection algorithm. This
process enhances the relevant features and suppresses noise,
ensuring that the lane detection is as accurate as possible.

1) Image Undistortion: The first step in preprocessing is to
apply the camera calibration results to correct any distortion in
the captured images. Using the camera matrix and distortion
coefficients, we employ the cv2.undistort function to rectify
the images, ensuring that the geometric integrity of the scene
is maintained.

2) Perspective Transformation: A crucial step in prepro-
cessing is the perspective transformation. By transforming the
image to a bird’s-eye view, we simplify the lane detection
problem, making the lanes appear parallel and easier to
analyze.

(a) Front View Selction

(b) Processed Top View

Fig. 3: The input image is the figure on top and the perspective-
transformed image on the bottom

3) Color Space Conversion: The undistorted image is first
converted into HLS (Hue, Lightness, Saturation) and HSV
(Hue, Saturation, Value) color spaces. These color spaces are
more robust to changes in lighting conditions compared to the
traditional RGB space and allow for more effective isolation
of lane markings. Below in Figure 4 there is conversions for
selection.

Fig. 4: HLS Color Spacing

4) Gradient Thresholding: The next step involves applying
Sobel operators to the luminance (lightness) channel to detect
edges in the image. This method highlights the structural
outline of lane lines by focusing on areas where there is a
rapid change in intensity.

5) Color Thresholding: In parallel with gradient threshold-
ing, color thresholding is applied to the saturation channels
of both HLS and HSV color spaces. This step is crucial for
identifying lane lines based on their color, which is particularly
useful in differentiating them from the surrounding pavement.
Figure 6 shows the adaptive thresholding done.

Fig. 5: Adaptive Thresholding

6) Combining Thresholds: The outputs from both gradient
and color thresholding are combined to produce a binary image
where the pixels of interest, primarily those belonging to lane
lines, are represented as white against a black background.

Fig. 6: Combining H and S Threshold

The rationale behind each step of image preprocessing is
grounded in the goal of maximizing the visibility of lane
lines under varying environmental conditions. Color space
conversion is justified by the distinct color properties of lane
markings, which can be more easily separated from the rest
of the scene in HLS and HSV spaces. Gradient thresholding
is employed to detect the physical structure of lanes, which is
characterized by edges and lines. Color thresholding comple-
ments this by targeting the unique color signatures of lane
paint. The combination of these methods ensures that the
system remains effective across a range of scenarios, including
changes in natural and artificial lighting, weather conditions,
and road textures.

In addition to the core preprocessing steps, we discuss
the selection of threshold values and their optimization for
different driving conditions. We also explored the use of
additional image filters, such as Gaussian blurring, to reduce
noise and improve the reliability of edge detection. The choice
of color spaces and thresholding techniques is further justified
by referencing literature that highlights their effectiveness in
lane detection applications.

C. Lane Detection

Lane detection is the centerpiece of the “Vehicle Road-
Sense” system, where the precise boundaries of the lanes
are identified, and the vehicle’s position within these lanes is
determined. This process is vital for autonomous driving and
driver assistance systems, as it directly influences navigation
and safety.

1) Perspective Transformation: Once the perspective trans-
formation has been applied to achieve a bird’s-eye view,
the lane detection algorithm proceeds to the critical task of
identifying the pixels that make up the lane markings. This
identification is a multi-step process:

a) Binary Thresholding: The transformed image is sub-
jected to binary thresholding, which simplifies the image into a
binary format where the lanes are represented by white pixels
(value 1) and the rest of the image by black pixels (value
0). This thresholding is not a single-step process but involves
several sub-steps, each designed to target specific features
associated with lane lines, such as color and gradient.

(a) Adaptive Thresh on Perspective Transformed Img

(b) Combining Thresholds

Fig. 7: The input image is the figure on top and the perspective-
transformed image on the bottom

b) Noise Reduction: To ensure that the binary image
primarily contains information relevant to the lane lines, noise
reduction techniques such as Gaussian blurring are applied.
This step helps to mitigate the effects of shadows, road texture,
and other extraneous factors that could lead to false detections.

c) Sliding Window Technique: With a cleaner binary
image, the sliding window technique is employed to locate the
lane pixels. This involves dividing the image into a number
of horizontal bands and, within each band, sliding a window
across the width of the image to identify the concentration
of white pixels. The center of these windows is adjusted
dynamically, moving left or right, depending on where the
majority of the white pixels are concentrated. This approach
is particularly effective in tracking the lanes through curves
and variations in the road’s width.

Fig. 8: Example Representation of Sliding Windows

2) Polynomial Fitting: The polynomial fitting process is
where the detected lane pixels are used to define the actual
path of the lane lines:

a) Least Squares Method:: The least squares method is
used to fit a second-degree polynomial to the lane pixels.
This statistical method minimizes the sum of the squares of
the residuals, the differences between the observed values
(the detected lane pixels) and the values predicted by the
polynomial function.

b) Polynomial Representation: The second-degree poly-
nomial is represented by the equation

y = Ax2 +Bx+ C

, where A, B, and C are the polynomial coefficients that define
the curvature and orientation of the lane lines. The variable y
represents the vertical position in the image, and x represents
the horizontal position.

Below in Fig. 9 is an illustration of the output of the
polynomial fit

c) Robustness and Adaptability: To ensure robustness,
the fitting process includes mechanisms to adapt to different
lane line visibility and road conditions. For instance, if the
detected pixels do not form a coherent line, or if there are too
few pixels, the algorithm can adjust its parameters or rely on
historical data to predict the lane line path.

Fig. 9: Example Representation of Polynomial Fit

Fig. 10: Detected Lane Segmented

3) Curvature Calculation: The curvature of the lanes is cal-
culated using the polynomial coefficients. This metric provides
insight into the road’s geometry and is essential for steering
control in autonomous vehicles.

The curvature of the lane (C) and is calculated as follows:

C =
(1 + (2Ay +B)2)3/2

|2A|
where A, B, and y are the coefficients and evaluation point
from the polynomial fit of the lane lines.

The perspective transformation is justified by the need to
simplify the lane detection problem. By transforming the road
view into a plane where lane lines are parallel, we can apply
more straightforward computational techniques to detect them.
Polynomial fitting is the method of choice for lane boundary
representation due to its ability to model the curvature of the
road with a high degree of accuracy.

D. Vehicle and Pedestrian Detection

The vehicle and pedestrian detection component of the
“Vehicle RoadSense” system is powered by the YOLOv8
pretrained model. This model is a cornerstone of the project
due to its exceptional speed and accuracy, which are essential
for real-time detection in dynamic traffic environments.

1) Model Selection: The YOLOv8 model is selected for its
impressive capabilities in object detection tasks. It is pretrained
on a comprehensive dataset, enabling it to recognize a wide
array of objects with high precision [7].

Fig. 11: Yolo V8 Architecture

2) Frame Processing: Each frame from the video feed is
passed through the YOLOv8 model. The model analyzes the
frame and identifies objects that match the patterns it has
learned during training.

3) Bounding Box Extraction: For each detected object, the
model computes a bounding box that accurately encloses the
object. These boxes are crucial for determining the location
and size of the objects within the frame.

4) Class Label Assignment: Alongside the bounding boxes,
the model assigns class labels to each detected object, such as
’vehicle’ or ’pedestrian’, providing semantic information about
the contents of the frame.

5) Confidence Scoring: Each detection is accompanied by
a confidence score, which represents the model’s certainty
regarding the detection’s accuracy. This score is used to filter
out less reliable detections and reduce false positives.

Fig. 12: Yolo V8 Output Example

YOLOv8 is the latest iteration in the YOLO (You Only
Look Once) series of models, known for their efficiency
and effectiveness in object detection tasks. The model’s ar-
chitecture allows it to process images quickly, making it
suitable for applications that require real-time analysis, such as
autonomous driving systems [9]. Its ability to detect small and

overlapping objects is particularly valuable in cluttered urban
traffic scenarios, where pedestrians and vehicles are often in
close proximity [7].

In addition to the previously mentioned procedures and
justifications for employing the YOLOv8 pretrained model,
it is important to note the practical constraints that influenced
this decision.

Time Constraints and Model Training: Given the time-
bound nature of the project, developing a custom-trained
model was not feasible. Training a deep learning model for
object detection from scratch requires a substantial amount of
time and resources. It involves collecting a large dataset, an-
notating the images with bounding boxes, and then iteratively
training the model, which can take weeks or even months to
achieve the desired level of accuracy.

III. INTEGRATION AND OUTPUT - RESULTS

The culmination of the “Vehicle RoadSense” system is
the integration of lane detection with vehicle and pedestrian
detection, synthesizing the data into a coherent output that can
be acted upon by the driver or autonomous driving system.

Fig. 13: Detected segmented Lane Overlay on Input Image

1) Data Synthesis: The system begins by synthesizing the
data from both the lane detection and the YOLOv8 object
detection modules. This involves overlaying the detected lane
boundaries onto the original video frame to provide a visual
representation of the lane’s path.

2) Bounding Box Overlay: Concurrently, the bounding
boxes and class labels generated by the YOLOv8 model for
vehicles and pedestrians are overlaid onto the frame. This step
is crucial for situational awareness, as it highlights the location
and identity of other road users.

3) Information Display: Alongside the visual overlays, the
system computes and displays key information such as the
curvature of the detected lanes. This information is presented
in a clear and concise manner, we chose at the left top edge
of the frame or in a designated image window area.

Fig. 14: Dashboard Visual Overlay

4) Real-Time Feedback: The integrated output is designed
to provide real-time feedback to the driver or autonomous
system. This feedback is critical for immediate decision-
making, such as steering adjustments or speed control.

Fig. 15: Integration of Lane and Vehicle Detection

The integration of spatial and object detection data is
justified by the need for a comprehensive understanding of the
vehicle’s environment. By combining these data streams, the
system can provide actionable insights that are greater than the
sum of their parts. For instance, knowing the position of the
vehicle within the lane and the location of nearby pedestrians
can inform advanced safety features like automatic emergency
braking or evasive maneuvers.

IV. CONCLUSION

The ”Vehicle RoadSense” initiative is a technical endeavor
that integrates established image processing methodologies
with advanced machine learning techniques to address the
challenges of road safety and vehicular automation. The
project’s success hinges on the precise detection of lane
boundaries, the identification of vehicles and pedestrians, and
the synthesis of these data streams into a coherent output.

The system’s lane detection algorithm is underpinned by a
series of technical steps: camera calibration corrects lens dis-
tortion; image preprocessing enhances lane visibility; perspec-
tive transformation facilitates a top-down view for easier lane
identification; and polynomial fitting mathematically models
the lane boundaries. These steps are critical for the system’s
ability to accurately determine the vehicle’s position within
the lane and to provide essential navigational guidance.

Incorporating the YOLOv8 pretrained model addresses
the need for real-time, accurate detection of vehicles and
pedestrians. The model’s utilization is a strategic decision,
circumventing the extensive process of data annotation and
custom model training, which is often constrained by time
and resources. YOLOv8’s proficiency in detecting small and
overlapping objects in complex scenes is a key factor in its
selection.

The final integration stage combines the lane detection
results with the object detection outputs, overlaying this in-
formation onto the original video feed. This integrated view
is crucial for the system’s real-time response capabilities,
enabling prompt and informed decision-making critical for
autonomous driving applications.

The “Vehicle RoadSense” project exemplifies the practical
application of computer vision and deep learning in creat-

ing advanced driver-assistance systems. It demonstrates the
potential of such technologies to improve road safety and
paves the way for future innovations in the field of intelligent
transportation systems.

Fig. 16: Detection Example from the Video

V. ROLES

A. Dinesh Dhotrad

Developed the utils/cameraCalib.py module, which is re-
sponsible for camera calibration. This module corrects for any
distortion in the images, ensuring that the subsequent image
processing is based on accurate spatial information.

Authored the performThreshold.py script, which includes
functions for applying relative and absolute thresholding to
images. This is a crucial step in isolating relevant pixels for
lane detection.

Contributed to the detectionPipeline/laneDetection.py script,
which includes the core algorithms for detecting lane pixels
and fitting a polynomial to the lane lines.

Also contributed to the detectionPipeline/utils.py script,
which provides utility functions such as calculating the curva-
ture of the lane lines and annotating the lane information on
the output frame.

B. Praneeth Kollati

Developed the utils/imagePerspective.py module, which
handles the perspective transformation of the images. This
transformation is key to converting the camera view into a top-
down view, simplifying the lane detection problem. Authored
the detectionPipeline/utils.py script alongside Dinesh Dhotrad,
contributing to functions that calculate the curvature of the
lanes and annotate the output images with lane information.

C. Together

Contributed to the main.py script, which serves as the entry
point for the lane detection process. This script integrates
various components of the system and orchestrates the flow
from image capture to lane annotation.

REFERENCES

1) A curated list of awesome lane detection resources and
projects.
https://github.com/amusi/awesome-lane-detection

2) An article discussing advanced techniques in computer
vision for lane detection.
https://link.springer.com/article/10.1007/
s42835-020-00570-y

3) A comprehensive study on the application of deep
learning for real-time lane detection.
https://arxiv.org/pdf/2404.14671

4) Research on object and lane detection techniques for
autonomous vehicles using machine learning.
https://www.researchgate.net/publication/356420839
Object and Lane Detection Technique for
Autonomous Car Using Machine Learning Approach

5) A chapter from a book that explores lane and object
detection for autonomous vehicles.
https://link.springer.com/chapter/10.1007/
978-981-19-3015-7 17

6) A paper presenting a model for lane and object detection
in self-driving cars.
https://www.ijtsrd.com/papers/ijtsrd39952.pdf

7) The official documentation for Ultralytics YOLOv8,
detailing its usage and features.
https://docs.ultralytics.com/

8) The GitHub repository for Ultralytics, providing access
to the YOLOv8 source code and resources.
https://github.com/ultralytics/ultralytics

9) YOLOv8 : Comprehensive Guide to State Of The Art
Object Detection
https://learnopencv.com/ultralytics-yolov8/

